NETWORK MEASURES OF MEDITERRANEAN LINER TRANSPORT SYSTEM
Ordinary geographical and transportation maps are networks where actor positioning reflects Euclidean distances between the actors. Distances between actors on these maps reflect a structural data set: spatial distances. In principle, what this research is doing is a re-mapping of the spatial context into an economic context using network structures. The idea of this research is to implement the social networks techniques in the field of the transportation networks. The proposal of the authors is to accept calculated measures that could be indicative in understanding the possible economic advantages derived from the geographic and transportation networks. Although these research is in primary phase the results calculated and presented in this paper show that this approach could be significant in showing new trends, when dealing with the network structure. In this paper the research theory is reviewed, and then Mediterranean liner transportation model has been presented. Authors are conscious that the models in the real world are different, and that model represents momentarily snapshot of liner network, and that there is also tramp vessel network. Although this, authors are certain that the models and the results shown in this research are sufficient to provide ulterior research.

2. RESEARCH THEORY - THE NETWORK APPROACH

Main unit of the analysis is a network. A network can be viewed in several ways. One of the most useful views is as a graph, consisting of nodes joined by directed lines. A graph Γ consists of a two sets of information: a set of nodes $N = \{n_1, n_2, ..., n_g\}$ also called vertixes, and a set of lines $\Lambda = \{l_1, l_2, ..., l_L\}$ between pairs of nodes. There are g nodes and L lines. In a graph each line is an ordered pair of distinct nodes $l_k = \langle n_i, n_j \rangle$. We will exclude a reflexive line, or loop, between a node and itself $\langle n_i, n_i \rangle$. The graph with node set N, and line set Λ will be denoted as $\Gamma(N, \Lambda)$.

The graph can be also presented by a diagram in which points depict nodes, and a line is drawn between two points if there is a line between the corresponding two nodes in the set of lines Λ.

The information in the graph $\Gamma(N, \Lambda)$ may also be expressed in a variety of ways in a matrix form. Especially useful is adjacency matrix Ξ of size $g \times g$. The entries in the matrix x_{ij} record which pairs of nodes are adjacent, i.e. $x_{ij} = 1$ if exists $l_k = \langle n_i, n_j \rangle$, and $x_{ji} = -1$ if exists $l_k = \langle n_i, n_j \rangle$ and does not exist $l_k = \langle n_j, n_i \rangle$, otherwise $x_{ij} = 0$. It is possible that the cell x_{ij} has value different than $\{0,-1,1\}$, but in that case the incidence matrix becomes attribute-incidence matrix Z with cells defined as z_{ij}.

To represent the network approach case study is implemented. Taking network perspective, rather than individual dyadic relationships, offers significant insight at the cost of considerable complexity. To cope with the complexity, the transport corridor is defined as a series of focal networks comprising the material flow.

The structure and behavior of networks are grounded and enacted by local interactions between ports. Despite the simplicity of ideas and definitions there are good theoretical reasons to believe that these basic properties all of the networks have very important consequences.

Because most countries are not usually connected directly to most other countries in a continent, it can be quite important to go beyond simply examining the immediate connections of ports, and the overall density of direct connections in network.
The second, closely related, approach in this paper has to do with the idea of hierarchy in the network. The level of hierarchy in the network is closely related to the behavior of the companies encompassed in network structure.

The size of a network is often a very important. For the network consisting of few actors it is ordinal to presume existence of the all links between them. For a network consisting of thousand of actors, it would be difficult that each actor has links to every other in the network. Size is critical for the structure of network because of the limited resources and capacities that each actor has for building and maintaining links. As a network gets bigger, density - as the proportion of all present links, gets smaller. The density of the links in the network is defined as the quotient of the links presented, and all possible links in the network.

Formulae for the density of the network is:

\[d_n = \frac{\sum_{i=1}^{g} d(n_i)}{g} \]

and the standard deviation is:

\[S_d = \sqrt{\frac{\sum_{i=1}^{g} (d(n_i) - \overline{d})^2}{g}} \]

Standard deviation of the density is a measure of the uniformity of the links in the network. The variability of the nodal degrees means that the actors represented by the nodes differ in activity as measured by the number of links. Fully saturated networks (i.e. one where all logically possible ties are actually present) are empirically rare, particularly where there are more than a few actors in the population.

Another measure of structure is centralization. Centralization refers to overall integration or cohesion of a network graph. Centralization indicates the extent to which a graph is organized around its most central point.

There are few different measures of the centrality indicating different kind of measures in the network.

Actors who have more ties have greater opportunities because they have choices. This autonomy makes them less dependent on any specific other actor, and hence more powerful. The more ties an actor has then, the more power they (may) have.

Formula for the calculation of the degree centrality is:

\[C_D(p_k) = \sum_{i=1}^{n} a(p_k, p_i) \]

where \(a(p_k, p_i) = \begin{cases} 1 & \text{if } p_i \text{ and } p_k \text{ are connected} \\ 0 & \text{if } p_i \text{ and } p_k \text{ are not connected} \end{cases} \)

where \(n \) is number of actors.

Power can be exerted by direct bargaining and exchange, and it also comes from acting as a "reference point" by which other actors judge themselves, or by being a center of attention who's views are heard by larger numbers of actors. Actors who are able to reach other actors at shorter path lengths, or who are more reachable by other actors at shorter path lengths have favored positions. This structural advantage can be translated into power.

Formula for the calculation of the closeness centrality is:

\[C_{dc}(p_k) = \frac{1}{\sum_{i=1}^{n-1} d(p_i, p_k)} \]

where:

\(d(p_i, p_k) \) number of actors connecting \(p_i \) and \(p_k \).

Actor who lies between other pairs of actors, and no other actors lie between it and other actors has big advantages. For example if A wants to contact B, it may simply do so if it is connected
with it. If C wants to contact B, they must do so by way of A who lies on the way between them. This gives actor A the capacity to broker contacts among other actors -- to extract "service charges" and to isolate actors or prevent contacts. The third aspect of a structurally advantaged position then is in being between other actors.

Betweenness centrality

\[C_B(p_k) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{g_{ij}(p_k)}{g_{ij}} \]

Where: \(g_{ij} \) – number of shortest connections between \(p_i \) and \(p_j \).

The identification of cohesive areas of a network has been the goal of many network analyses. Techniques have been taken from multivariate statistics (MDS, clustering etc.) as well as from graph theory.

Many of the approaches to understanding the structure of a network emphasize how dense connections are compounded and extended to develop larger "cliques" or sub-groupings. The idea of a clique is relatively simple. At the most general level, a clique is a sub-set of a network in which the actors are more closely and intensely tied to one another than they are to other members of the network. The cliques are defined as a maximal complete subgraphs.

A graph is called complete if all its vertices are connected to all the other vertices in the graph. A maximal complete subgraph of a graph is called a clique. By "maximal" we mean that this subgraph is contained within no other subgraph that is also complete.

A set of size \(k \) has \(\binom{k}{i} \) subcliques of size \(i \), \(1 \leq i \leq k \). This implies that any algorithm that looks for a maximal clique must be careful to generate each subclique the fewest number of times possible. One way to generate the clique is to extend a clique of size \(m \) to size \(m+1 \) and to continue this process by trying out all possible vertices. But this strategy generates the same clique many times; this can be avoided as follows:

Given a clique \(X \), suppose node \(v \) is the first node that is added to produce a clique of size one greater. After the backtracking process examines all possible cliques that are produced from \(X \) and \(v \), then no vertex adjacent to \(v \) need be added to \(X \) and examined. Let \(X \) and \(Y \) be cliques and let \(X \) be properly contained in \(Y \). If all cliques containing \(X \) and vertex \(v \) have been generated, then all cliques with \(Y \) and \(v \) can be ignored.

Another measure is called multidimensional scaling. From a non-technical point of view, the purpose of multidimensional scaling (MDS) is to provide a visual representation of the pattern of proximities (i.e., similarities or distances) among a set of objects. From a slightly more technical point of view, what MDS does is find a set of vectors in \(p \)-dimensional space such that the matrix of Euclidean distances among them corresponds as closely as possible to some function of the input matrix according to a criterion function called stress.

A simplified view of the algorithm is as follows:

1. Assign points to arbitrary coordinates in \(p \)-dimensional space.
2. Compute Euclidean distances among all pairs of points, to form the matrix.
3. Compare that matrix with the input matrix by evaluating the stress function. The smaller the value, the greater the correspondence between the two.
4. Adjust coordinates of each point in the direction that best maximally stress.
5. Repeat steps 2 through 4 until stress won't get any lower.
Normally, MDS is used to provide a visual representation of a complex set of relationships that can be scanned at a glance. Since maps on paper are two-dimensional objects, this translates technically to finding an optimal configuration of points in 2-dimensional space.

3. **The Model**

The model used in this research is fundamental, but nevertheless in authors view they will show a method for measuring the Mediterranean liner transport system. As there is significant problem to retrieve information about liner services in all Mediterranean ports, authors have, in the first week of march, created snapshot of data shown on picture 1.

![Mediterranean liner network.](image)

Picture 1. Mediterranean liner network.

Model is created adding links between ports in liner service. All ports outside area of interest have been excluded together with their ties. This is significant limitation to the model, but as this is initial research authors do think that the results, with this restricted model are significant.

4. **The Results**

The results from the investigation of these models show that the transport system has 264 from 3304 possible connections between ports, or mean value for density of 0,08 (8 %), with standard deviation of 0,271, showing a loosely coupled system with high variety. Network has total reachability, meaning that there is always a route between any port in network.
The relevance as a factor is directly coupled to the degree centrality. The degree centrality could be separated on two parts, first calculating in- and other out – degree, depending on the incoming and outgoing paths. In- degree centrality is known as prominence, and out – degree centrality is usually tied with the idea of influence. As a transportation system is not directed the in and out degrees are identical. The results of the calculation of the degree centrality are shown on the picture 2.

![Diagram of Mediterranean ports centrality factors](image)

Pict. 2. Centrality factors for Mediterranean ports
Mean value for in and out — degree centrality for network is 7.76, with standard deviation of 7.03 and 6.83 respectively. Network centralization is 36.5% showing moderate centralization, with most central ports of Gioia Turo, Malta, Livorno, Taranto, Barcelona and Genoa.

The closeness centrality has been calculated for models and shown on the picture 3.

Average closeness centrality for model is 46.5% with 6.99 standard deviation, indicating that the ports in the transport system have high closeness.

The betweenness centrality is always connected with the terms of bridging-over, because it gives the measure of the importance of being the mediator between two actors. In the transport system this factor is connected with the term transshipment. Total betweenness centrality for nodes in model is 3.28% with standard deviation of 6.8%, with network centrality of 44.5% defining...
that there are few central ports in system. Network analysis shows that most central is port of Gioia Turo with centrality factor of 47.02 %, followed by the ports of Cagliary, Malta and Taranto having centrality factor bigger than 10 %.

![Diagram showing centrality for ports.](image)

Pict 3. Closeness centrality for ports.

Another measure that is of interest is power defined by Bonachich. Degree centrality approach argues that actors who have more connections are more likely to be powerful because they can directly affect more other actors. Bonacich argued that one's power is a function of how many connections one has, and how many the connections the actors in the neighborhood had. The calculation of this measure is fairly complex, because it has to be done in recursive way. Calculation has been made using Computer program UCINET and is shown on picture 4.

Results show that overall power of network is 2,339 with standard deviation of 2.059. Gioia Turo port has power of 12.5 or 9.06 % of all ports in network, followed by Malta 5.8%, Cagliary 5.07 %, Taranto 4.7 %, Genoa 3.99 %, Piraeus, Izmir and Barcelona with 2.90%.

Power is spread unevenly and first 10 ports have 42.3% of all power in the whole network consisting of 59 ports.

Although differences in power and scarce density of network Multidimensional scaling (MDS) shows interesting facts shown in picture 5.

Multidimensional scaling is a set of data analysis techniques that display the structure of distance-like data as a geometrical picture. Moreover some authors define it as a process of transforming geographical data into economic ones. MDS pictures the structure of a set of objects from data that approximate the distances between pairs of the objects. Each object or event is
Picture 4. Power coefficient of Mediterranean ports

Picture 5. Multidimensional scalling
represented by a point in a multidimensional space. The points are arranged in this space so that
the distances between pairs of points have the strongest possible relation to the similarities among
the pairs of objects. That is, two similar objects are represented by two points that are close
together, and two dissimilar objects are represented by two points that are far apart. MDS
representation shows that mainly all ports are close together, representing unique similarity
between them. Most of ports are within circle representing scale of 1 measurement unit,
showing collectiveness and representing very closed community.

6. CONCLUSION

In the paper the authors propose the measures to calculate different features of
Mediterranean liner network. Model that has been proposed, and proposed measures have been
calculated showing significant conformity with the real situation. The authors are certain that
the considerations about the other research of differences in the transport system must now take
into account the results reported here.

REFERENCES

Bonacich, Phillip. 1972. Technique for analyzing overlapping memberships. in Herbert Costner
Bonacich, Phillip. 1972. Factoring and weighting approaches to status scores and clique
detection, Journal of Mathematical Sociology, 2: 113-120
Berkowitz, S.D. 1982. An introduction to structural analysis: The network approach to
Business School Press.
Gibb Transportation Planning: Balkan Transport Study, Executive Summary. Contract No. 95-
Kesić B., Komadina P, Čišić D Towards the unified theory of Port gravitational areas –
Introducing the information centrality factors 2nd Int. Conference on traffic science
Trieste Patras 1998
Marsden, Peter and Nan Lin (eds.) 1982. Social structure and network analysis. Beverly Hills:
Sage.